Rationally designed graphene-nanotube 3D architectures with a seamless nodal junction for efficient energy conversion and storage.

نویسندگان

  • Yuhua Xue
  • Yong Ding
  • Jianbing Niu
  • Zhenhai Xia
  • Ajit Roy
  • Hao Chen
  • Jia Qu
  • Zhong Lin Wang
  • Liming Dai
چکیده

One-dimensional (1D) carbon nanotubes (CNTs) and 2D single-atomic layer graphene have superior thermal, electrical, and mechanical properties. However, these nanomaterials exhibit poor out-of-plane properties due to the weak van der Waals interaction in the transverse direction between graphitic layers. Recent theoretical studies indicate that rationally designed 3D architectures could have desirable out-of-plane properties while maintaining in-plane properties by growing CNTs and graphene into 3D architectures with a seamless nodal junction. However, the experimental realization of seamlessly-bonded architectures remains a challenge. We developed a strategy of creating 3D graphene-CNT hollow fibers with radially aligned CNTs (RACNTs) seamlessly sheathed by a cylindrical graphene layer through a one-step chemical vapor deposition using an anodized aluminum wire template. By controlling the aluminum wire diameter and anodization time, the length of the RACNTs and diameter of the graphene hollow fiber can be tuned, enabling efficient energy conversion and storage. These fibers, with a controllable surface area, meso-/micropores, and superior electrical properties, are excellent electrode materials for all-solid-state wire-shaped supercapacitors with poly(vinyl alcohol)/H2SO4 as the electrolyte and binder, exhibiting a surface-specific capacitance of 89.4 mF/cm(2) and length-specific capacitance up to 23.9 mF/cm, - one to four times the corresponding record-high capacities reported for other fiber-like supercapacitors. Dye-sensitized solar cells, fabricated using the fiber as a counter electrode, showed a power conversion efficiency of 6.8% and outperformed their counterparts with an expensive Pt wire counter electrode by a factor of 2.5. These novel fiber-shaped graphene-RACNT energy conversion and storage devices are so flexible they can be woven into fabrics as power sources.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functionalization of graphene for efficient energy conversion and storage.

As global energy consumption accelerates at an alarming rate, the development of clean and renewable energy conversion and storage systems has become more important than ever. Although the efficiency of energy conversion and storage devices depends on a variety of factors, their overall performance strongly relies on the structure and properties of the component materials. Nanotechnology has op...

متن کامل

Carbon three-dimensional architecture formed by intersectional collision of graphene patches

Graphite is the most stable form of carbon under room temperature and atmospheric pressure, and consists of two-dimensional honeycomb lattices with intralayer sp2 bonding and rather weak van der Waals like interlayer interaction. When we supply gaseous small carbonic molecules such as methane to a patch of graphene, the patch will grow into graphite. Now, let us imagine a slightly different sit...

متن کامل

Optoelectronics in Carbon Nanotube Photodiodes and Graphene Hetero-Interface Devices

The excellent thermal, electronic and optical properties of carbon nanotubes (NTs) and graphene strongly motivate the use of these materials in optoelectronic devices. Here, we review our recent investigations of NT and graphene optoelectronic devices. By studying individual NT and graphene devices, we aim to uncover novel physical phenomena and establish a foundation for future applications in...

متن کامل

Elastic Carbon Aerogels Reconstructed from Electrospun Nanofibers and Graphene as Three-Dimensional Networked Matrix for Efficient Energy Storage/Conversion

Three-dimensional (3D) all-carbon nanofibrous aerogels with good structural stability and elasticity are highly desirable in flexible energy storage/conversion devices. Hence, an efficient surface-induced co-assembly strategy is reported for the novel design and reconstruction of electrospun nanofibers into graphene/carbon nanofiber (CNF) composite aerogels (GCA) with hierarchical structures ut...

متن کامل

Three-Dimensional Porous Architectures of Carbon Nanotubes and Graphene Sheets for Energy Applications

*Correspondence: Peng Chen, Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive 637457, Singapore e-mail: [email protected] Owing to their extraordinary physicochemical, electrical, and mechanical properties, carbon nanotubes (CNTs) and graphene materials have been widely used to improve energy storage and conversion. I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science advances

دوره 1 8  شماره 

صفحات  -

تاریخ انتشار 2015